Launch Offer: Use codelaunch30for 30% off

too many columns

This error occurs when you try to create a table with more columns than SQLite allows, or a query result exceeds column limits. Default limit is 2000 columns.

The too many columns error means you've exceeded SQLite's column limit.

Understanding the Error

Error: too many columns on table
Error: too many columns in result set

Default maximum is 2000 columns per table or result set.

Common Causes

1. Table With Too Many Columns

SQL
CREATE TABLE wide_table (
  col1 INTEGER,
  col2 INTEGER,
  -- ... 2000+ columns
);

2. SELECT With Many Columns

SQL
SELECT t1.*, t2.*, t3.*, t4.*, ...
FROM t1, t2, t3, t4, ...
-- Total columns exceed limit

3. Pivot Operations

Dynamic pivots can create excessive columns.

How to Fix It

Solution 1: Normalize the Data

SQL
-- Instead of:
CREATE TABLE survey (
  id INTEGER,
  question_1 TEXT,
  question_2 TEXT,
  -- ... question_2000 TEXT
);

-- Use:
CREATE TABLE survey_responses (
  survey_id INTEGER,
  question_number INTEGER,
  response TEXT
);

Solution 2: Use JSON Column

SQL
CREATE TABLE survey (
  id INTEGER PRIMARY KEY,
  responses TEXT  -- JSON object with all answers
);

INSERT INTO survey VALUES (1, '{"q1": "yes", "q2": "no", ...}');

-- Query specific field
SELECT json_extract(responses, '$.q1') FROM survey;

Solution 3: Split Into Multiple Tables

SQL
CREATE TABLE user_basic (id INTEGER PRIMARY KEY, name TEXT, email TEXT);
CREATE TABLE user_profile (user_id INTEGER, bio TEXT, avatar TEXT);
CREATE TABLE user_settings (user_id INTEGER, theme TEXT, language TEXT);

Solution 4: Select Only Needed Columns

SQL
-- Instead of SELECT *
SELECT id, name, email FROM users
JOIN orders ON users.id = orders.user_id;

Solution 5: Entity-Attribute-Value Pattern

For truly variable schemas:

SQL
CREATE TABLE entity_attributes (
  entity_id INTEGER,
  attribute_name TEXT,
  attribute_value TEXT,
  PRIMARY KEY (entity_id, attribute_name)
);

Best Practices

  1. Normalize data - Wide tables usually indicate design issues
  2. Use JSON for flexible/variable data
  3. Limit SELECT columns to what you need
  4. Review data model if hitting limits
  5. Consider PostgreSQL for complex schemas